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1 Introduction and outline

The California Solar Initiative (CSI) rebate program requires a performance-
based-incentive (PBI) payout for systems larger than 30 kW and makes it
optional for smaller systems. This requires metering and monthly submis-
sion of 15 minute energy output to the payout administrator. We have
obtained the 2010 quality-controlled CSI power output for 115 PV power
plants in SDG&E, PG&E, and SCE territory. The data-set and quality con-
trol methods for system performance data are described in more detail in
Itron and Kema (2010). The data were further quality controlled to remove
effects of shading, low resolution power output, noise, inconsistent output
(possibly due to disconnected strings), soiling, inverter clipping (undersized
inverter), tracking, system downtime, and other effects not representative of
irradiance (Luoma and Kleissl, 2012).

15 minute averaged data are not always sufficient. For example, to study
power quality issues (‘flicker’) or impacts of PV sites on voltage regulation
equipment, data at higher temporal resolution are required. At present, such
data only exists at a few sites (e.g. less than five publicly available in Califor-
nia), but is mostly proprietary to power plant owners and system operators.
Hence, one objective of the CSI RD&D program was to provide solar resource
data at higher temporal resolution. We intend to mimic realistic behavior of
solar irradiance observations at a higher temporal resolution than the record-
ing interval of the data. Given merely the actual recordings, this so-called
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‘downscaling’ produces realizations at a higher sampling rate that are ex-
pected to be statistically similar to actual recordings. In this CSI project,
observations provided as 15 minute averages are used to generate a sample
with one observation per 0.8789 seconds. This corresponds to a ‘downscaling
factor’ of 210 = 1024.

In Section 2 of this document, the downscaling model is introduced and
applied to clear-sky data from CSI network sites. Further, downscaling re-
sults are validated against Global Horizontal Irradiance (GHI) data at 1 sec-
ond temporal resolution and converted to power plant output. A description
of the provided data (Section 3) concludes this work.

2 Model overview

2.1 Model description

The key-properties of wavelet decompositions, namely simultaneous local-
ization in time and frequency, are utilized to construct a frequency/scale
dependent downscaling approach. A hidden Markov model in a tree arrange-
ment is used to simulate a set of (partial) discrete wavelet coefficients, with
the inverse transform leading to a downscaled version of the input signal.
Due to the tree-like structure of the model, it is able to reflect certain inter-
scale dependence structures (Crouse et al., 1998). Those structures can be
associated with the impact of passing cloud shadows, when the impact per-
meates from longer (the cloud time scale) to shorter time scales. The wavelet
coefficients at each time scale have to be calibrated using the variance at each
time scale. A separate model is constructed to estimate variances at short
time scales from the variance at 15 minutes. Based on observed variance
decreases in 1 sec measured data, variance is reduced toward shorter time
scales. The downscaling model is applied to clear-sky indexes obtained from
CSI 15 minute averaged power data. In the downscaling process, the hidden
Markov model is used to generate wavelet coefficients at the shorter scales.
Results of this model are shown in Figure 1.

In the following, the method is validated through comparison of a coarser
sampled and subsequently downscaled time series with the original (mea-
sured) series. The metrics are distribution functions of downscaled and orig-
inal data and corresponding ramp rates. Moreover, estimated and sample
variance versus time scale are compared. The data was recorded on the Uni-
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Figure 1: Downscaled clear-sky index at a sampling rate of one per 0.8789
seconds and CSI data at a rate of four per hour. Observations stem from a
CSI site at 33.01◦ lat, -117.04◦ lon for June 1, 2010.

versity of California San Diego campus with a Licor 200Z silicon pyranometer
and will be referred to as ‘original’,‘1sec measured’ data or simply ‘observa-
tions’. From the original data, we first generate a coarser sampled version
analoguous to the 15 min CSI data. Somewhat loosely, these data are de-
noted as ‘sampled at 15 minutes’ temporal resolution. Through dividing the
original time series into non-overlapping chunks of 1024 consecutive obser-
vations and taking the average of each chunk (‘block-averaging’), we create
a time series with a sampling interval of roughly 17 minutes. This coarsely
sampled time series constitutes the point of departure for the downscaling
procedure. Downscaling results are in turn compared to the original 1 sec
data.

2.2 Application to clear-sky index data

Observations of solar irradiance usually show non-stationary behavior in the
course of one day and little persistence on a day to day basis. These charac-
teristics represent a challenge to every downscaling procedure. We illustrate
our approach with two examples from the aforementioned data set with 1 sec-
ond temporal resolution. Two days of data with broken and fluctuating cloud
cover exemplify some typical non-stationary characteristics: Figure 2 (left)
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shows observations from an overall clear day with scattered clouds appearing
midday and intensifying throughout the evening. While the 15 minute av-
erage remains relatively constant during the day, the variance changes with
time.
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Figure 2: Left: Measured 1sec, block-averaged, and downscaled clear-sky
index at the UC San Diego campus for January 5, 2009. Right: Cumulative
distribution functions of absolute ramp rates of original and downscaled data;
note the logarithmic scale on the abscissa.

Figure 2 (left) shows that the downscaled data follows the overall pattern
as well as changes in variance. The latter is a result of the Markov model
being organized in separate trees, such that every tree ‘adopts’ the local vari-
ance behavior. It should be noted however, that the number of trees can not
be made arbitrary large (as would be advantageous for highly non-stationary
data), as it depends on the number of samples available to downscale from.
Naturally, the accuracy of the downscaling procedure increases with increas-
ing sample size of observations.

The cumulative distribution functions (CDFs) of absolute ramp rates
(Figure 2, right) are in very good agreement, mostly as a result of the good
agreement between the variances as functions of scale (Figure 3, right). Fi-
nally, the estimated probability density functions (PDFs) of observed and
downscaled data are shown to be in good agreement (Figure 3, left).

In Figure 4 (left) thick cloud cover in the morning transitions to clear
sky after about 0900 h. During the cloudy period, both clear sky index and
variance transition from low to high values as the cloud cover breaks up.
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Figure 3: Left: Probability density functions for original and downscaled
data shown in Figure 2. Right: Estimated (blue) and sample variance (green)
per scale, where time = 2scale sec. Note that the variances at shorter time
scales are calibrated using the variances at scale number 9 and 10 (8.5 and
17 minutes); so, variances of wavelet coefficients in scale number 9 and 10
coincide with the original.

As can be noted from the graph, the downscaling model reproduces those
regimes quite well.

The accuracy of ramp rate CDFs (Figure 4, right) is slightly worse com-
pared to January 5, 2009, presumably due to a slightly worse fit of the
variances per scale in Figure 5 (right). The PDFs in Figure 5 (left) show
very good agreement between observations and downscaled data.

2.3 Conversion to power plant output

Besides clear sky indexes, normalized power output for typical CSI systems
is also generated. The downscaled clear-sky index described in Section 2
exhibits the statistical behavior of single point measurements. However,
since PV sites cover an area of a few to 10,000 square meters, the aggregate
power output variability is reduced when compared to point measurements
(Lave et al., 2011). To estimate the effect of geographic smoothing, we apply
a wavelet-based variability model (WVM) as described in Lave and Kleissl
(2012). Firstly, the downscaled (unit-less) clear-sky index is multiplied by
power output estimated for clear skies to obtain power output in Watt.

The WVM estimates the amount of geographic smoothing at various
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Figure 4: Left: Measured 1sec, block-averaged and downscaled clear-sky
index at the UC San Diego campus for July 7, 2009. The latter is derived from
block-averages of the original data, shown as red stars. Right: Cumulative
distribution functions of absolute ramp rates of original and downscaled data
with logarithmic scale on abscissa. Note that the ‘bump’ in the observed 1 sec
ramp rate is an artifact of the precision of the sensor.
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Figure 5: Left: Probability density functions for original and downscaled
data shown in Figure 4. Right: Estimated (blue) and sample variance (green)
per scale.

timescales by taking into account the dimensions of the system and their
effect on correlation in power output between individual panels. A larger
system will experience less correlation between the output of individual pan-
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els, resulting in a smoothed output. Lave and Kleissl (2012) showed that
the correlation as a function of distance and timescale was highly consistent
across different sites and days if scaled by a coefficient A. Lower values of
A indicate less correlation and hence more smoothing. Likely due to a dif-
ference in average cloud speeds, A was found to be larger for inland sites.
For each day, we draw A from a uniform distribution on [1, 3] for coastal and
uniform on [3, 5] for inland sites. Figure 6 shows sites categorized as coastal
and inland, respectively; and Table 1 presents an overview of site location
and PV plant capacity.
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Figure 6: Geographical locations of CSI sites. Sites are classified as coastal
(red) or inland (blue).

Applying the WVM to the downscaled power data does not affect the
variability on longer time scales as shown in Figure 7 (left). However, a
shorter snapshot (Figure 7, right) reveals some smoothing due to spatially
upscaling the point observations to the power plant. In this example, the PV
systems are relatively small such that smoothing occurs at short timescales
(a few seconds), only. This effect is nonetheless critical to consider when
computing e.g. short-time ramp rates of system power output as it reduces
power quality impacts over short time scales.
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Location Location Location

Lat [◦N] Lon [◦W] Cap [kW] Lat [◦N] Lon [◦W] Cap [kW] Lat [◦N] Lon [◦W] Cap [kW]

36.8 119.7 940 36.2 120.1 976 33.5 117.1 7
37.3 121.9 346 38.0 122.4 133 34.2 119.1 984
37.2 121.9 333 38.4 122.8 37 34.4 117.9 7
38.0 121.4 339 34.4 119.7 193 33.8 116.5 5
35.4 119.1 323 36.3 119.3 77 34.5 117.2 6
37.3 121.9 640 33.9 118.0 66 34.3 118.7 85
38.0 122.6 358 33.9 117.6 321 34.2 119.2 52
37.5 122.0 145 33.6 117.2 292 35.0 117.5 37
37.2 121.9 197 33.6 117.7 344 34.5 117.3 20
38.8 121.3 1000 34.1 117.8 225 33.8 116.5 12
38.2 122.3 231 34.6 118.2 214 33.2 117.3 284
37.4 121.9 553 33.6 117.6 200 32.7 117.0 140
40.7 122.3 8 34.1 117.3 996 32.8 117.0 323
37.9 122.4 858 36.3 119.3 328 32.6 117.0 352
38.5 122.5 284 34.5 117.4 347 32.6 117.0 39
37.1 121.7 5 33.9 117.2 998 33.1 117.3 53
37.3 121.9 702 33.9 118.1 48 33.6 117.6 133
38.5 122.9 267 33.7 117.9 74 33.1 117.1 306
36.6 119.6 8 34.3 118.9 245 32.9 117.1 214
37.8 122.0 999 34.3 119.2 350 33.4 117.6 46
38.4 122.7 60 33.8 118.1 193 32.8 117.0 48
37.4 121.9 185 33.9 118.0 226 33.0 117.0 326
37.4 121.9 418 33.5 117.1 321 32.6 117.0 507
37.4 121.9 160 34.2 117.5 214 32.9 117.0 502
37.4 121.9 102 33.9 118.0 221 33.0 117.1 999
37.4 121.9 168 34.1 117.6 348 32.6 117.1 573
37.0 122.0 65 33.8 118.3 117 32.7 117.1 3
38.1 121.3 14 33.7 117.3 49 32.8 117.3 2
38.0 122.4 73 36.3 119.7 494 32.9 117.2 3
37.4 122.0 77 33.9 118.4 522 32.8 117.2 2
36.8 120.6 32 36.2 119.3 449 32.7 117.0 4
38.1 122.3 470 36.3 119.4 10 32.9 117.2 4
38.4 122.8 44 34.6 117.8 9 32.8 117.0 7
38.8 122.2 37 34.1 117.4 373 33.0 117.0 6
37.7 121.7 458 33.9 118.2 2 32.8 117.2 5
39.7 121.7 74 33.9 117.6 7 32.8 117.2 7
39.7 121.7 323 33.8 118.1 6 32.7 117.2 4
39.7 121.8 240 37.7 121.8 620 33.0 117.0 9
35.6 119.4 281

Table 1: Overview of CSI site location and capacity. Locations are rounded
to one tenth of a degree.

3 Description of database and file format

Data are stored one day per file, 365 files per site and year. Each file con-
sists of five comma separated value (csv) columns of floating point numbers.
Each value is rounded to the decimal place as shown in the below example,
corresponding to format string ‘%3d%3d%8.5f%7.5f%8.3f’ in C-like syntax.



10 3 Description of database and file format

08:30 09:30 10:30 11:30 12:30 13:30 14:30 15:30 16:30
0

50

100

150

200

250

300

350

time [hr:min]

po
w

er
 [k

W
]

 

 

downscaled 1s power @ point
downscaled 1s power @ 300 kW PV plant
observed 15min average

11:00 11:04 11:08 11:12 11:16

230

240

250

260

270

280

290

time [hr:min]

po
w

er
 [k

W
]

 

 

downscaled 1s power @ point
downscaled 1s power @ 300 kW PV plant
observed 15min average

Figure 7: Left: Downscaled, downscaled with wavelet-based variability
model (WVM), and 15min power output. Right: Detailed display of 20
minute outtake of left-hand figure. Observations stem from a 300 kW CSI
site at 38.01◦ lat, -122.59◦ lon for January 3, 2010.

Lines are terminated by the line feed character (A in hexadecimal ASCII
notation). The right-most column consists of PV plant power output data
(cf. Section 2.3) given in units of kilowatt. Downscaled clear-sky index as
described in Section 2.1 and displayed in Figure 1 is listed in the 4th column.
The 3 left-most columns show the timestamp in hours (1st column), minutes
(2nd column) and seconds (3rd column), respectively. Values in the third
column are incremented by 0.8789 seconds. For example, the line

8, 30, 0.87890,0.09737, 27.969

shows a clear-sky index of 0.09737 and a power output of 27.969 kW at
8:30am and 0.8789 seconds.

File names are given in the following format

lat_lon_capacity_year_day.csv,

i.e. the concatenation of the respective site’s geographical location, date of
recording and site capacity in kW, delimited by underscores. The location is
given as (signed) decimal degrees latitude and longitude, whereas the date is
indicated by year and day of year (ordinal date). For example, the file

033.5_-117.1_321_2010_001.csv

contains one day (January 1, 2010) of data for the site at 33.5◦ latitude
and -117.1◦ longitude with capacity 321 kW. All site locations are shown in
Figure 6.
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3.1 File size and handling of missing values

The number of lines per file varies as the amount of daylight hours changes
with season. Hence, file sizes vary accordingly. An individual file covers
the time period between sunrise and sunset. Missing values are recorded as
‘NaN’, Not-a-Number. In the rare case (less than 5 instances per year and
site) of a whole day of missing values, a full 24 hour cycle of NaNs is covered.
This constitutes the maximum file size of 3342336 bytes.

3.2 How to request data

Due to the large data volume, data are not posted online. Data is available
upon request from http://solar.ucsd.edu/datasharing/ .
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